您现在的位置是:首页 > 科技信息 > 正文

腾讯混元新突破:浮点量化训练理论揭秘大模型训练效能极限

发布时间:2025-01-17 13:39:56编辑:惠翠薇来源:

导读 腾讯混元团队近期发布了一项关于低比特浮点量化训练的重要研究,核心在于探索如何在不损失性能的前提下,通过降低模型精度来显著降低计算和...

腾讯混元团队近期发布了一项关于低比特浮点量化训练的重要研究,核心在于探索如何在不损失性能的前提下,通过降低模型精度来显著降低计算和存储成本。研究通过366组不同参数规模和精度的实验,系统分析了影响训练效果的多种因素,并得出了一套统一的规模法则。

研究指出,在任意低精度的浮点数量化训练中,存在性能最优的“极限效果”,且理论上最佳性价比的浮点数量化训练精度应在4到8比特之间。该研究填补了领域空白,为未来硬件制造商优化浮点运算能力提供了参考,也为大模型训练的实践提供了明确方向。

标签:

上一篇
下一篇

猜你喜欢

最新文章