您现在的位置是:首页 > 生活 > 正文
基于AI的生物样本染色
发布时间:2023-03-07 16:10:44编辑:来源:
组织学染色是临床和生命科学研究中组织检查的主要工具,已在病理学实验室中常规进行,以协助评估病理生理学和疾病诊断。尽管使用广泛,但标准的组织学染色程序存在一些缺点,例如劳动密集型准备步骤、周转时间长、成本高和结果不一致。
虚拟染色是一种基于深度学习的数字生成组织学染色的方法,有可能彻底改变传统的组织学染色工作流程。通过消除对化学染色和有毒化合物的需求,虚拟染色为传统染色方法提供了一种快速、经济高效且准确的替代方法,这可能会提高诊断的准确性和速度,从而改善患者的治疗效果并降低医疗保健成本。
加州大学洛杉矶分校的Ozcan 小组最近发表了一篇关于这种新兴虚拟染色技术的评论论文。这篇评论文章标题为“支持深度学习的生物样本虚拟组织学染色”,全面概述了虚拟染色领域的最新进展。它涵盖了支持深度学习的虚拟染色技术的基本概念、典型的开发工作流程和未来前景。它还突出了代表作品的一些关键结果,总结了这个快速发展领域的最新研究进展。
这篇关于虚拟染色的评论文章发表在Light: Science & Applications上,是 Springer Nature 的期刊,为学者、光学工程师、显微镜学家、计算机科学家、生物学家、组织学家和病理学家等提供了宝贵的资源。“我们相信这篇综述论文将作为该研究领域技术发展的图集,提供对虚拟染色最新进展的顶级理解,”Aydogan Ozcan 博士说,“我们希望它能激发读者的灵感不同的科学领域进一步扩大这一令人兴奋的领域的范围和应用,并继续突破虚拟染色的可能性”。
Ozcan 小组是一个位于加州大学洛杉矶分校的研究小组,致力于为各种应用开发创新的光学成像和分析工具,包括生物医学、诊断和环境监测。该集团致力于推进虚拟染色技术,并利用深度学习将这一尖端技术带入数字病理学领域。该研究由 Aydogan Ozcan 博士领导,他是加州大学洛杉矶分校的校长教授和 Volgenau 工程创新主席,也是霍华德休斯医学研究所的 HHMI 教授。这项工作的其他作者包括 Bijie Bai、Xilin Yang、Yuzhu Li、Yijie Zhang 和 Nir Pillar,他们都来自加州大学洛杉矶分校的电气与计算机工程系。教授 Ozcan 还在加州大学洛杉矶分校的生物工程和外科部门任教,并且是加州纳米系统研究所的副主任。他与他人共同创立了 Pictor Labs,这是一家将虚拟染色技术商业化的公司。
标签:
猜你喜欢
- 绷的多音字是什么意思(绷的多音字是什么)
- 微笑照片大全图片(微笑照片)
- 异性相吸同性相斥原理(异性相吸)
- 王奕盛打狗棍演的谁(王奕盛)
- 南极冰盖融化的影响(若南极冰盖完全融化地球海平面将上升)
- 通达信快捷键大全图片(通达信快捷键大全)
- 尺度最大的美剧是哪一部小说(尺度最大的美剧是哪一部)
- 找不到金税盘怎么解决(找不到金税盘)
- 开皇律是谁颁布的(开皇律)
- 主导的意思是(主导的意思)
- 二流子比喻什么人(二流子)
- 记忆棉是什么材质(记忆棉是什么)
- 企业安全生产的目的是什么(企业安全生产的重要意义)
- 厦门大学嘉庚学院好不好?(厦门大学嘉庚学院好不好)
- 余姚市梦麟中学2024年高考成绩(余姚市梦麟中学)
- 最好听的十首英语歌曲(最好听的英语歌曲排行榜)
- 适合手机铃声的歌曲纯音乐(适合手机铃声的歌曲)
- 三无人员是指哪三无(三无产品是指哪三无)
- 印度人口密度有多恐怖(印度人口密度)
- 苏州高铁站和苏州北站是一个地方吗(苏州高铁站)